Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.625
Filter
1.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731416

ABSTRACT

The synthesis of stereochemically pure oximes, amines, saturated and unsaturated cyanomethyl compounds, and methylaminomethyl compounds at the C9 position in 3-hydroxy-N-phenethyl-5-phenylmorphans provided µ-opioid receptor (MOR) agonists with varied efficacy and potency. One of the most interesting compounds, (2-((1S,5R,9R)-5-(3-hydroxyphenyl)-2-phenethyl-2-azabicyclo[3.3.1]nonan-9-yl)acetonitrile), was found to be a potent partial MOR agonist (EC50 = 2.5 nM, %Emax = 89.6%), as determined in the forskolin-induced cAMP accumulation assay. Others ranged in potency and efficacy at the MOR, from nanomolar potency with a C9 cyanomethyl compound (EC50 = 0.85 nM) to its totally inactive diastereomer, and three compounds exhibited weak MOR antagonist activity (the primary amine 3, the secondary amine 8, and the cyanomethyl compound 41). Many of the compounds were fully efficacious; their efficacy and potency were affected by both the stereochemistry of the molecule and the specific C9 substituent. Most of the MOR agonists were selective in their receptor interactions, and only a few had δ-opioid receptor (DOR) or κ-opioid receptor (KOR) agonist activity. Only one compound, a C9-methylaminomethyl-substituted phenylmorphan, was moderately potent and fully efficacious as a KOR agonist (KOR EC50 = 18 nM (% Emax = 103%)).


Subject(s)
Amines , Oximes , Oximes/chemistry , Oximes/pharmacology , Stereoisomerism , Structure-Activity Relationship , Amines/chemistry , Amines/pharmacology , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/agonists , Humans , Animals , Molecular Structure , CHO Cells , Morphinans/chemistry , Morphinans/pharmacology
2.
Molecules ; 29(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38731560

ABSTRACT

2, 6-diisopropylaniline (2, 6-DIPA) is a crucial non-intentionally organic additive that allows the assessment of the production processes, formulation qualities, and performance variations in biodegradable mulching film. Moreover, its release into the environment may have certain effects on human health. Hence, this study developed simultaneous heating hydrolysis-extraction and amine switchable hydrophilic solvent vortex-assisted homogeneous liquid-liquid microextraction for the gas chromatography-mass spectrometry analysis of the 2, 6-DIPA additive and its corresponding isocyanates in poly(butylene adipate-co-terephthalate) (PBAT) biodegradable agricultural mulching films. The heating hydrolysis-extraction conditions and factors influencing the efficiency of homogeneous liquid-liquid microextraction, such as the type and volume of amine, homogeneous-phase and phase separation transition pH, and extraction time were investigated and optimized. The optimum heating hydrolysis-extraction conditions were found to be a H2SO4 concentration of 2.5 M, heating temperature of 87.8 °C, and hydrolysis-extraction time of 3.0 h. As a switchable hydrophilic solvent, dipropylamine does not require a dispersant. Vortex assistance is helpful to speed up the extraction. Under the optimum experimental conditions, this method exhibits a better linearity (0.0144~7.200 µg mL-1 with R = 0.9986), low limit of detection and quantification (0.0033 µg g-1 and 0.0103 µg g-1), high extraction recovery (92.5~105.4%), desirable intra- and inter-day precision (relative standard deviation less than 4.1% and 4.7%), and high enrichment factor (90.9). Finally, this method was successfully applied to detect the content of the additive 2, 6-DIPA in PBAT biodegradable agricultural mulching films, thus facilitating production process monitoring or safety assessments.


Subject(s)
Amines , Aniline Compounds , Gas Chromatography-Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Liquid Phase Microextraction , Solvents , Liquid Phase Microextraction/methods , Gas Chromatography-Mass Spectrometry/methods , Solvents/chemistry , Amines/chemistry , Amines/analysis , Aniline Compounds/chemistry , Hydrolysis , Polyesters/chemistry
3.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731616

ABSTRACT

PNAzymes are a group of artificial enzymes which show promising results in selective and efficient cleavage of RNA targets. In the present study, we introduce a series of metal chelating groups based on N,N-bis(2-picolyl) groups (parent, 6-methyl and 6-amino substituted) as the active sites of novel PNAzymes. An improved synthetic route for the 6-amino analogues is described. The catalytic activity of the chelating groups for cleaving phosphodiesters were assessed with the model substrate 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP), confirming that the zinc complexes have the reactivity order of parent < 2-methyl < 2-amino. The three ligands were conjugated to a PNA oligomer to form three PNAzymes which showed the same order of reactivity and some sensitivity to the size of the RNA bulge designed into the catalyst-substrate complex. This work demonstrates that the kinetic activity observed for the model substrate HPNPP could be translated onto the PNAzymes, but that more reactive Zn complexes are required for such PNAzymes to be viable therapeutic agents.


Subject(s)
Zinc , Zinc/chemistry , Peptide Nucleic Acids/chemistry , Chelating Agents/chemistry , RNA/chemistry , RNA/metabolism , Catalysis , Amines/chemistry , Kinetics , Organophosphates
4.
Food Res Int ; 186: 114394, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729737

ABSTRACT

The ability of spices (bay leaf, star anise, and red pepper) and their characteristic phenolic compounds (quercetin, kaempferol, and capsaicin) to inhibit Heterocyclic aromatic amines (HAAs) in roasted beef patties were compared. Density functional theory (DFT) was used to reveal phenolic compounds interacting with HAAs-related intermediates and free radicals to explore possible inhibitory mechanisms for HAAs. 3 % red chili and 0.03 % capsaicin reduced the total HAAs content by 57.09 % and 68.79 %, respectively. DFT demonstrated that this was due to the stronger interaction between capsaicin and the ß-carboline HAAs intermediate (Ebind = -32.95 kcal/mol). The interaction between quercetin and phenylacetaldehyde was found to be the strongest (Ebind = -17.47 kcal/mol). Additionally, DFT indicated that capsaicin reduced the carbonyl content by transferring hydrogen atoms (HAT) to eliminate HO·, HOO·, and carbon-centered alkyl radicals. This study provided a reference for the development of DFT in the control of HAAs.


Subject(s)
Amines , Cooking , Density Functional Theory , Heterocyclic Compounds , Phenols , Amines/chemistry , Cattle , Heterocyclic Compounds/chemistry , Animals , Phenols/analysis , Capsaicin/chemistry , Capsaicin/pharmacology , Capsaicin/analogs & derivatives , Capsicum/chemistry , Skatole/analysis , Spices/analysis , Red Meat/analysis , Meat Products/analysis , Hot Temperature , Quercetin/analogs & derivatives , Quercetin/analysis , Quercetin/pharmacology
5.
Proc Natl Acad Sci U S A ; 121(19): e2314704121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38691589

ABSTRACT

Amine modification through nucleophilic attack of the amine functionality is a very common chemical transformation. Under biorelevant conditions using acidic-to-neutral pH buffer, however, the nucleophilic reaction of alkyl amines (pKa ≈ 10) is not facile due to the generation of ammonium ions lacking nucleophilicity. Here, we disclose a unique molecular transformation system, catalysis driven by amyloid-substrate complex (CASL), that promotes amine modifications in acidic buffer. Ammonium ions attached to molecules with amyloid-binding capability were activated through deprotonation due to the close proximity to the amyloid catalyst formed by Ac-Asn-Phe-Gly-Ala-Ile-Leu-NH2 (NL6), derived from islet amyloid polypeptide (IAPP). Under the CASL conditions, alkyl amines underwent various modifications, i.e., acylation, arylation, cyclization, and alkylation, in acidic buffer. Crystallographic analysis and chemical modification studies of the amyloid catalysts suggested that the carbonyl oxygen of the Phe-Gly amide bond of NL6 plays a key role in activating the substrate amine by forming a hydrogen bond. Using CASL, selective conversion of substrates possessing equivalently reactive amine functionalities was achieved in catalytic reactions using amyloids. CASL provides a unique method for applying nucleophilic conversion reactions of amines in diverse fields of chemistry and biology.


Subject(s)
Amyloid , Catalysis , Amyloid/chemistry , Amyloid/metabolism , Amines/chemistry , Amines/metabolism , Hydrogen Bonding , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Hydrogen-Ion Concentration , Humans
6.
ACS Appl Mater Interfaces ; 16(20): 25601-25609, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38727578

ABSTRACT

We report an ultrasensitive sandwich-type electrochemical immunosensor to detect the breast cancer biomarker CA 15-3. Amine-functionalized composite of reduced graphene oxide and Fe3O4 nanoparticles (MRGO-NH2) was used as an electrochemical sensing platform material to modify the electrodes. The nanocomposite comprising Pt and Fe3O4 nanoparticles (NPs) anchored on multiwalled carbon nanotubes (Pt-Fe3O4-MWCNTs-NH2) was utilized as a pseudoenzymatic signal-amplifying label. Compared to reduced graphene oxide, the composite MRGO-NH2 platform material demonstrated a higher electrochemical signal. In the Pt-Fe3O4-MWCNTs-NH2 label, multiwalled carbon nanotubes provided the substratum to anchor abundant catalytic Pt and Fe3O4 NPs. The nanocomposites were thoroughly characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. An electroanalytical study and prevalidation of the immunosensor was carried out. The immunosensor exhibited exceptional capabilities in detecting CA 15-3, offering a wider linear range of 0.0005-100 U mL-1 and a lower detection limit of 0.00008 U mL-1. Moreover, the designed immunosensor showed good specificity, reproducibility, and acceptable stability. The sensor was successfully applied to analyze samples from breast cancer patients, yielding reliable results.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Electrochemical Techniques , Nanocomposites , Nanotubes, Carbon , Platinum , Humans , Nanotubes, Carbon/chemistry , Breast Neoplasms/diagnosis , Nanocomposites/chemistry , Electrochemical Techniques/methods , Biomarkers, Tumor/analysis , Biomarkers, Tumor/blood , Female , Platinum/chemistry , Biosensing Techniques/methods , Graphite/chemistry , Amines/chemistry , Mucin-1/analysis , Mucin-1/blood , Immunoassay/methods , Limit of Detection
7.
Chem Pharm Bull (Tokyo) ; 72(5): 432-453, 2024.
Article in English | MEDLINE | ID: mdl-38692858

ABSTRACT

We have developed efficient synthetic reactions using enamines and enamides carrying oxygen atom substituent on nitrogen, such as N-alkoxyenamines, N,α-dialkoxyenamines, N-alkoxyanamides, and N-(benzoyloxy)enamides. The umpolung reaction by polarity inversion at the ß-position of N-alkoxyenamines afforded α-alkyl-, α-aryl-, α-alkenyl-, and α-heteroarylketones by using aluminum reagent as nucleophiles. Furthermore, one-pot umpolung α-phenylation of ketones has been also developed. We applied this method to umpolung reaction of N,α-dialkoxyenamine, generated from N-alkoxyamide to afford α-arylamides. The vicinal functionalization of N-alkoxyenamines has been achieved with the formation of two new carbon-carbon bonds by using an organo-aluminum reagent and subsequent allyl magnesium bromide or tributyltin cyanide. A sequential retro-ene arylation has been developed for the conversion of N-alkoxyenamides to the corresponding tert-alkylamines. The [3,3]-sigmatropic rearrangement of N-(benzoyloxy)enamides followed by arylation afforded cyclic ß-aryl-ß-amino alcohols bearing a tetrasubstituted carbon center. The resulting products were converted into the corresponding sterically congested cyclic ß-amino alcohols, as well as the dissociative anesthetic agent Tiletamine.


Subject(s)
Amides , Amines , Amides/chemistry , Amides/chemical synthesis , Amines/chemistry , Amines/chemical synthesis , Molecular Structure , Nitrogen/chemistry , Oxygen/chemistry
8.
Carbohydr Polym ; 338: 122168, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763718

ABSTRACT

Enzymatic functionalization of oligosaccharides is a useful and environmentally friendly way to expand their structural chemical space and access to a wider range of applications in the health, food, feed, cosmetics and other sectors. In this work, we first tested the laccase/TEMPO system to generate oxidized forms of cellobiose and methyl ß-D-cellobiose, and obtained high yields of novel anionic disaccharides (>60 %) at pH 6.0. Laccase/TEMPO system was then applied to a mix of cellooligosaccharides and to pure D-cellopentaose. The occurrence of carbonyl and carboxyl groups in the oxidation products was shown by LC-HRMS, MALDI-TOF and reductive amination of the carbonyl groups was attempted with p-toluidine a low molar mass amine to form the Schiff base, then reduced by 2-picoline borane to generate a more stable amine bond. The new grafted products were characterized by LC-HRMS, LC-UV-MS/MS and covalent grafting was evidenced. Next, the same procedure was adopted to successfully graft a dye, the rhodamine 123, larger in size than toluidine. This two-step chemo-enzymatic approach, never reported before, for functionalization of oligosaccharides, offers attractive opportunities to anionic cellooligosaccharides and derived glucoconjugates of interest for biomedical or neutraceutical applications. It also paves the way for more environmentally-friendly cellulose fabric staining procedures.


Subject(s)
Amines , Laccase , Oligosaccharides , Oligosaccharides/chemistry , Amines/chemistry , Laccase/chemistry , Laccase/metabolism , Cyclic N-Oxides/chemistry , Oxidation-Reduction , Cellobiose/chemistry , Schiff Bases/chemistry
9.
Int J Biol Macromol ; 267(Pt 2): 131497, 2024 May.
Article in English | MEDLINE | ID: mdl-38688796

ABSTRACT

A novel amine-functionalized graphene oxide (AFG) doped polyvinyl alcohol (PVA)/chitosan (PVA-Ch) composite film was developed using an eco-synthesis approach, eliminating the need for halogenated compounds. The resulting AFG-doped PVA/Chitosan (PVA-Ch/AFG) polymer film exhibited promising properties for controlled delivery and biosensing applications. The investigation included assessing the swelling behaviour, dissolution percent, gel fraction, and mechanical properties of the polymer film. The swelling characteristics of PVA-Ch and PVA-Ch/AFG were found to be pH and temperature-dependent across various pH ranges (3, 5, 7, and 9). Interestingly, PVA-Ch/AFG demonstrated a stable swelling pattern at pH 5 and 7, unaffected by changes in chitosan concentration, indicating enhanced stability compared to PVA-Ch. The study also explored the use of PVA-Ch/AFG in a drug delivery system, revealing controlled release of the model antibiotic amphicillin, emphasizing its potential in medical applications. Furthermore, the eco-friendly synthesis route underscored the safety of PVA-Ch/AFG for use in food and medical applications. Biocompatibility assessments, including biodegradability studies and cytotoxicity tests on fibroblasts (3T3 cells), confirmed the safety profile of PVA-Ch/AFG. In conclusion, the study suggests that PVA-Ch/AFG holds promise for bio-sensing applications, offering a flexible and colorimetric platform capable of encapsulating, adsorbing, and desorbing biomolecules such as drugs and sensing compounds.


Subject(s)
Chitosan , Graphite , Hydrogels , Polyvinyl Alcohol , Polyvinyl Alcohol/chemistry , Graphite/chemistry , Chitosan/chemistry , Mice , Animals , Hydrogels/chemistry , Hydrogen-Ion Concentration , Amines/chemistry , 3T3 Cells , Temperature , Drug Carriers/chemistry
10.
Int J Biol Macromol ; 267(Pt 1): 131448, 2024 May.
Article in English | MEDLINE | ID: mdl-38593901

ABSTRACT

Nowadays, various harmful indoor pollutants especially including bacteria and residual formaldehyde (HCHO) seriously threaten human health and reduce the quality of public life. Herein, a universal substrate-independence finishing approach for efficiently solving these hybrid indoor threats is demonstrated, in which amine-quinone network (AQN) was employed as reduction agent to guide in-situ growth of Ag@MnO2 particles, and also acted as an adhesion interlayer to firmly anchor nanoparticles onto diverse textiles, especially for cotton fabrics. In contrast with traditional hydrothermal or calcine methods, the highly reactive AQN ensures the efficient generation of functional nanoparticles under mild conditions without any additional catalysts. During the AQN-guided reduction, the doping of Ag atoms onto cellulose fiber surface optimized the crystallinity and oxygen vacancy of MnO2, providing cotton efficient antibacterial efficiency over 90 % after 30 min of contact, companying with encouraging UV-shielding and indoor HCHO purification properties. Besides, even after 30 cycles of standard washing, the Ag@MnO2-decorated textiles can effectively degrade HCHO while well-maintaining their inherent properties. In summary, the presented AQN-mediated strategy of efficiently guiding the deposition of functional particles on fibers has broad application prospects in the green and sustainable functionalization of textiles.


Subject(s)
Amines , Cellulose , Manganese Compounds , Oxides , Manganese Compounds/chemistry , Oxides/chemistry , Cellulose/chemistry , Amines/chemistry , Quinones/chemistry , Silver/chemistry , Formaldehyde/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Textiles , Air Pollution, Indoor/prevention & control
11.
Int J Biol Macromol ; 267(Pt 1): 131584, 2024 May.
Article in English | MEDLINE | ID: mdl-38615856

ABSTRACT

Heterocyclic aromatic amines (HAAs) are the main carcinogens produced during thermal processing of protein-rich foods. In this paper, a composite aerogel (TOCNFCa) with a stabilized dual-network structure was prepared via a template for the in-situ synthesis of UiO-66 on cellulose for the adsorption of HAAs in food. The dual-network structure of TOCNFCa provides the composite aerogel with excellent wet strength, maintaining excellent compressive properties. With the in-situ grown UiO-66 content up to 71.89 wt%, the hierarchical porosity endowed TOCNFCa@UiO-66 with the ability to rapidly adsorb HAAs molecules with high capacity (1.44-5.82 µmol/g). Based on excellent thermal stability, adsorption capacity and anti-interference, TOCNFCa@UiO-66 achieved satisfactory recoveries of HAAs in the boiled marinade, which is faster and more economical than the conventional SPE method. Moreover, TOCNFCa@UiO-66 could maintain 84.55 % of the initial adsorption capacity after 5 times of reuse.


Subject(s)
Amines , Cellulose , Heterocyclic Compounds , Metal-Organic Frameworks , Nanofibers , Phthalic Acids , Cellulose/chemistry , Adsorption , Amines/chemistry , Nanofibers/chemistry , Metal-Organic Frameworks/chemistry , Heterocyclic Compounds/chemistry , Gels/chemistry , Porosity
12.
Food Chem ; 449: 139225, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38599107

ABSTRACT

Heterocyclic aromatic amines (HAAs), arising as chemical derivatives during the high-temperature culinary treatment of proteinaceous comestibles, exhibit notable carcinogenic potential. In this paper, a composite aerogel (AGD-UiO-66) with high-capacity and fast adsorption of HAAs was made with anchoring defective UiO-66 (D-UiO-66) mediated by lauric acid on the backbone of cellulose nanofibers (CNF). AGD-UiO-66 with hierarchical porosity reduced the mass transfer efficiency for the adsorption of HAAs and achieved high adsorption amount (0.84-1.05 µmol/g) and fast adsorption (15 min). The isothermal adsorption model demonstrated that AGD-UiO-66 belonged to a multilayer adsorption mechanism for HAAs. Furthermore, AGD-UiO-66 was successfully used to adsorb 12 HAAs in different food (roasted beef, roasted pork, roasted salmon and marinade) with high recoveries of 94.65%-104.43%. The intrinsic potential of AGD-UiO-66 demonstrated that it could be widely applicable to the adsorption of HAAs in foods.


Subject(s)
Amines , Cellulose , Nanocomposites , Adsorption , Amines/chemistry , Cellulose/chemistry , Animals , Nanocomposites/chemistry , Heterocyclic Compounds/chemistry , Cattle , Swine , Salmon , Metal-Organic Frameworks/chemistry , Meat/analysis , Food Contamination/analysis , Gels/chemistry
14.
Environ Int ; 186: 108636, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38593692

ABSTRACT

The uncommon metabolic pathways of organic pollutants are easily overlooked, potentially leading to idiosyncratic toxicity. Prediction of their biotransformation associated with the toxic effects is the very purpose that this work focuses, to develop a de novo method to mechanistically predict the reactive toxicity pathways of uncommon metabolites from start aliphatic amine molecules, which employed sertraline triggered by CYP450 enzymes as a model system, as there are growing concerns about the effects on human health posed by antidepressants in the aquatic environment. This de novo prediction strategy combines computational and experimental methods, involving DFT calculations upon sequential growth, in vitro and in vivo assays, dissecting chemically reactive mechanism relevant to toxicity, and rationalizing the fundamental factors. Significantly, desaturation and debenzylation-aromatization as the emerging metabolic pathways of sertraline have been elucidated, with the detection of DNA adducts of oxaziridine metabolite in mice, highlighting the potential reactive toxicity. Molecular orbital analysis supports the reactivity preference for toxicological-relevant C-N desaturation over N-hydroxylation of sertraline, possibly extended to several other aliphatic amines based on the Bell-Evans-Polanyi principle. It was further validated toward some other wide-concerned aliphatic amine pollutants involving atrazine, ε-caprolactam, 6PPD via in silico and in vitro assays, thereby constituting a complete path for de novo prediction from case study to general applications.


Subject(s)
Amines , Sertraline , Sertraline/metabolism , Amines/metabolism , Animals , Mice , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Humans , Biotransformation
15.
Environ Sci Technol ; 58(16): 7196-7207, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38597822

ABSTRACT

Aerosols produced in the amine carbon capture process can lead to secondary environmental pollution. This study employs molecular dynamics (MD) simulations to investigate cluster formation, amine behavior, and aerosol growth of amines, essential for reducing amine aerosol emissions. Results showed that the cluster evolution process can be divided into cluster formation and growth in terms of molecular content, and the nucleation rate for the present systems was estimated in the order of 1028 cm-3 s-1. CO2 absorption was observed alongside successful nucleation, with CO2 predominantly localizing in the cluster's outer layer postabsorption. Monoethanolamine (MEA) exhibited robust electrostatic interactions with other components via hydrogen bonding, leading to its migration toward regions where CO2 and H2O coexisted within the cluster. While MEA presence markedly spurred cluster formation, its concentration had a marginal effect on the final cluster size. Elevating water content can augment the aerosol growth rate. However, altering the gas saturation is possible only within narrow confines by introducing vapor. Contrarily, gas cooling introduced dual, opposing effects on aerosol growth. These findings, including diffusion coefficients and growth rates, enhance theoretical frameworks for predicting aerosol formation in absorbers, aiding in mitigating environmental impacts of amine-based carbon capture.


Subject(s)
Aerosols , Carbon Dioxide , Carbon Dioxide/chemistry , Molecular Dynamics Simulation , Amines/chemistry
16.
Environ Sci Technol ; 58(16): 6978-6987, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598712

ABSTRACT

Decarbonization of the cement sector is essentially required to achieve carbon neutrality to combat climate change. Amine-based CO2 capture is a leading and practical technology to deeply remove CO2 from the cement industry, owing to its high retrofittability to existing cement plants and extensive engineering experience in industrial flue gas decarbonization. While research efforts have been made to achieve low-carbon cement with 90% CO2 removal, a net-zero-emission cement plant that will be required for a carbon neutrality society has not yet been investigated. The present study proposed an advanced amine-based CO2 capture system integrated with a cement plant to achieve net-zero CO2 emission by pushing the CO2 capture efficiency to 99.7%. Monoethanomaine (MEA) and piperazine/2-amino-2-methyl-1-propanol (PZ-AMP) amine systems, which are considered to be the first- and second-generation capture agents, respectively, were detailed investigated to deeply decarbonize the cement plant. Compared to MEA, the advanced PZ-AMP system exhibited excellent energy performance with a regeneration duty of ∼2.6 GJ/tonne CO2 at 99.7% capture, 39% lower than the MEA process. This enabled a low CO2 avoided cost of $72.0/tonne CO2, which was 18% lower than that of the MEA-based zero-emission process and even 16.2% lower than the standard 90% MEA process. Sensitivity analysis revealed that the zero-emission capture cost of the PZ-AMP system would be further reduced to below $56/tonne CO2 at a $4/GJ steam production cost, indicating its economic competitiveness among various CO2 capture technologies to achieve a zero-emission cement plant.


Subject(s)
Amines , Carbon Dioxide , Carbon Dioxide/chemistry , Amines/chemistry , Construction Materials
17.
Anal Chim Acta ; 1304: 342538, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637049

ABSTRACT

BACKGROUND: With the advent of proline-based reporter isobaric Tandem Mass Tag (TMTpro) reagents, the sample multiplexing capacity of tandem mass tags (TMTs) has been expanded, and up to 18 samples can be quantified in a multiplexed manner. Like classic TMT reagents, TMTpro reagents contain a tertiary amine group, which markedly enhances their reactivity toward hydroxyl groups and results in O-acylation of serine, threonine and tyrosine residues. This overlabeling significantly compromises proteome analysis in terms of depth and precision. In particular, the reactivity of hydroxyl-containing residues can be dramatically enhanced when coexisting with a histidine in the same peptides, leading to a severe systematic bias against the analysis of these peptides. Although some protocols using a reduced molar excess of TMT under alkaline conditions can alleviate overlabeling of histidine-free peptides to some extent, they have a limited effect on histidyl- and hydroxyl-containing peptides. RESULTS: Here, we report a novel TMTpro labeling method that overcomes detrimental overlabeling while providing high labeling efficiency of amines. Additionally, our method is cost-effective, as it requires only half the amount of TMTpro reagents recommended by the reagent manufacturer. In a deep-scale analysis of a yeast/human two-proteome model sample, we compared our method with a typical alkaline labeling method using a reduced molar excess of TMTpro. Even at a depth of over 10,000 proteins, our method detected 23.7% more unique peptides and 8.7% more protein groups compared to the alkaline labeling method. Moreover, our method significantly improved the quantitative precision due to the reduced variability in labeling and increased protein sequence coverage. This substantially enhanced the statistical power of our method for detecting differentially abundant proteins, providing an average of 13% more yeast proteins that reached statistical significance. SIGNIFCANCE: We presented a novel TMTpro labeling method that overcomes the detrimental O-acylation and thus significantly improves the depth and quantitative precision for proteome analysis.


Subject(s)
Proteome , Tandem Mass Spectrometry , Humans , Proteome/analysis , Tandem Mass Spectrometry/methods , Proteomics/methods , Peptides/chemistry , Amines , Acylation
18.
J Hist Dent ; 72(1): 27-35, 2024.
Article in English | MEDLINE | ID: mdl-38642377

ABSTRACT

A full account of the preceded early research tribulation that led to the development of the first visible light activated composite resin and the first visible light activator source is documented. The events took place over four years since early 1974 when a raw industrial composite resin that was radiolucent, stiff paste, universal optically opaque white color, polymerized by exposure to a prototype visible light for 120 seconds was given to developed. Four years later, the developed restorative composite resin ended up as a radiopaque, optically translucent, universal color with an additional three shades that possessed the biologic, esthetic, mechanical and physical characteristics with proven efficacy be used for esthetic zone. This conservative account of early development of a technology that must count as one of a small number of inventions during the seventies, over the years has revolutionized restorative dental practice. We were privileged and very lucky to be associated with developmental stages, stumbling blocks, and final success of the first LC Composite resin that ignited the thought process worldwide and laid the foundation for modern esthetic restoratives practiced today.


Subject(s)
Amines , Composite Resins , Esthetics, Dental , Dentistry , Technology
19.
J Hist Dent ; 72(1): 21-26, 2024.
Article in English | MEDLINE | ID: mdl-38642376

ABSTRACT

A full account of early research that led to the discovery of the Alpha-diketone and Amine systems by two Imperial Chemical Industries (ICI) researchers. UK Chemists in the mid-sixties marked the beginning in the early development of a composite resin cured with visible light spectrum into a solid mass. Its incorporation into the newly developed Urethane based resin, led to conceiving the idea of developing the first light-activated restorative composite resin, which formed the prototype of modern composite restorative materials. How all that came about, and the ideas that were conceived and pursued in the development of these systems are discussed in detail.


Subject(s)
Amines , Dental Materials , Composite Resins , Dentistry , Dental Restoration, Permanent
20.
Animal ; 18(4): 101127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574452

ABSTRACT

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Subject(s)
Lactation , Lysine , Female , Cattle , Animals , Lysine/metabolism , Rumen/metabolism , Biological Availability , Diet/veterinary , Amino Acids/metabolism , Milk Proteins/metabolism , Amines/metabolism , Methionine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...